

深圳市天地飞科技开发有限公司

(ET系列)全比例8通道遥控器

微信公众号

感谢您使用天地飞科技产品!

●请您正确使用本产品!

航模不是玩具,为了安全,

请您不要到人群密集的地方飞行!

——深圳市天地飞科技开发有限公司

●使用本产品前请详细阅读本产品说明书!

02

标识含义	 06
飞行时的注意事项	 06
电源	 07
教练接口 ······	 08
USB接口 ······	 08

目录

使用之前

产品特点 ······	 09
基本配置	 09
发射机各部分的名称	 10
开关的配置及类型	 11
天线的方向	 11

基本操作

主页界面介绍	
发射机指示灯	
摇杆调整方法	
左右手模式更换方法	
接收机的使用说明	
接收机和舵机的连接示例-固定翼	
接收机和舵机的连接示例-直升机	
接收机和舵机的连接示例-多旋翼	
和的甘大沙宫哧虎	

模型的基本设定顺序

基本操作-固定翼的基本设置顺序	 19
基本操作-直升机的基本设置顺序	 20-21

▲ 🕸 👰 🗮 📡

系统设置														
模型选择	 		 	 -	 	 	 22							
机型选择	 	• •	 	 -	 	 	 23							
教练 -	 		 	 -	 	 	 24							
显示 -	 		 	 -	 	 	 25							
用户名	 	• •	 	 -	 	 	 26							
报警电压	 		 	 -	 	 	 27							
提示音 -	 		 	 -	 	 	 28							
语言 -	 		 	 -	 	 	 29							
摇杆模式	 		 	 -	 	 	 30							
摇杆校准	 		 	 -	 	 	 31							
数据重置	 		 	 -	 	 	 32							
系统信息	 		 	 -	 	 	 33							
锁屏设置	 		 	 -	 	 	 34							

目录

通信设置

对码	35
遥测	36
PPM/W.BUS	37
接收机端口设置	38
失控保护	39
接力飞行	40
舵机频率	41
BUS舵机设置	42
距离检测	43
180/270°舵机	44

通用功能

监视器	 -	 • -	-	 	-	 • -	-	 -	-	 	-	 	-	 	-	 	 · -		 -	 -	 	 	· -	 45
通道设置	-	 • •	-	 	-	 • •	-	 -	-	 	-	 	-	 	-	 • •	 -		 -	 -	 • -	 		 46
正反设置	-	 • •	-	 	-	 • -	-	 -	-	 	-	 	-	 	-	 • •	 	-	 -	 -	 • -	 	· -	 47
大小动作	-	 • •	-	 	-	 • •	-	 -	-	 	-	 	-	 	-	 • •	 -		 -	 -	 -	 	-	 48
舵角设置	-	 • •	-	 	-	 • -	-	 -	-	 	-	 	-	 	-	 • •	 · -	-	 -	 -	 • -	 	· -	 49
定时器	 -	 • •	-	 	-	 • •	-	 -	-	 	-	 	-	 	-	 • •	 -		 -	 -	 • -	 	-	 50
微调设置	-	 • •	-	 	-	 • -	-	 -	-	 	-	 	-	 	-	 	 -		 -	 -	 	 		 51
辅助微调	-	 • •	-	 	-	 • •	-	 -	-	 	-	 	-	 	-	 • •	 -		 -	 -	 • -	 	-	 52
通道延时	-	 • -	-	 	-	 • -	-	 -	-	 	-	 	-	 	-	 	 -		 -	 -	 	 		 53
编程混控	-	 • •	-	 	-	 • •	-	 -	-	 	-	 	-	 	-	 • •	 -		 -	 -	 • -	 	-	 54
姿态选择	-	 • -	-	 	-	 • -	-	 -	-	 	-	 	-	 	-	 	 -		 -	 -	 	 		 55
双引擎	 -	 • •	-	 	-	 • •	-	 -	-	 	-	 	-	 	-	 • •	 -	-	 -	 -	 • •	 		 56

模型功能\直升机

飞行模式		 	 	 	 57
油门曲线		 	 	 	 58
螺距曲线		 	 	 	 59
油门锁定		 	 	 	 60
油门熄火		 	 	 	 61
陀螺仪 …		 	 	 	 62
定速器 …		 	 	 	 63
十字盘设置	髶 • • •	 	 	 	 64

模型功能\固定翼

飞行模式	65
副翼差动	66
油门曲线	67
油门锁定	68
油门熄火 ************************************	69
陀螺仪	70
空气刹车	71
升降舵到翼型襟翼	72
翼梢小翼	73
副翼升降舵	74
V翼混控 ······	75
三角翼	76

模型功能\多旋翼

飞行模式		77
油门曲线	7	78
油门锁定	7	79
油门熄火	····· ξ	30
摇杆位置提	示音	31
陀螺仪 ···	····· {	32

安全注意事项

飞行时的注意事项

免责&警告:

使用本产品,则视使用者对本产品所产生的行为后果负责。天地飞科技对于产品直接或者间接造成的任何 损坏、伤害以及任何法律责任不予负责,用户应遵守包括但不限于本文档的所有指引。

敬请遵循当地法律法规进行正规飞行活动,不可使用本产品进行危及他人人身安全、财物安全等不良飞行 行为。

为了您和他人的安全,请遵守以下注意事项:

对电池进行充电!使用前检查发射机和接收机电池电量。低电量会导致模型失去控制而坠毁。 当您开始飞行时,重置您的ET08内置定时器,并在飞行过程中密切注意电池的电量使用情况。 要特别注意飞行场地的规则,以及观众的存在和位置,风向和场地内的任何障碍。 在电线、高层建筑或通信设施附近飞行一定要小心,因为周围可能会有无线电干扰。

危险 ! 务必遵守

初学者请特别注意以下安全事项!请细读! 禁止在疲劳、醉酒等身体状态不适时飞行! 禁止在下雨、强风等恶劣天气下飞行! 禁止在接近高压线、通信基站、有人聚集或活动的场所飞行! 禁止在机场和其他明令禁飞的地方飞行!

飞行前,做好飞行器的设备检测,检查收发系统与飞行器是否正常;飞行时,使发射机显示界面处在初始 界面,防误改参数;飞行后,先关闭接收机电源再关发射机电源,防失控保护功能生效伤人! 多调试,多测试,少损失,少伤害!

注意 (!) 务必遵守

发射机和接收机 通电与断电先后须知!

■ **通电步骤:** 先 发射机开机(保证油门处在最低) 后 接收机通电

■断电步骤:

先 接收机断电 后 发射机关机 发射机或接收机低电压会导致失控危险! **注意:这里发射机将会对应显示警告界面,请注意发射机提示!错误的操作将有可能令使用者受到意外伤**

2	
1	X

电源

锂聚合物电池(后面简称锂电池),请使用专业充电器进行充电。了解锂电池的工作特性很重要。

危险

了解锂电池的工作特性很重要。长时间存储(大于3个月),存储温度≤45摄氏度,一般储存电压3.7-3.9V。如未能遵循使用注意事项会导致对电池严重的永久性损害,并可能导致火灾!

注意

1、不要试图拆卸锂电池。

2、任何时候都不要让锂电池潮湿或沾水。

3、在充电、放电、使用和储存期间,始终给锂电池提供充足的通风。

4、充电或放电时,任何时候不要离开锂电池无人值守。

5、不要试图使用非锂电池专用充电器对电池充电, 会对电池和充电器造成永久损害。

6、必须在防火环境下对锂电池进行充电。不要在地毯、杂乱的工作台、靠近纸、 塑料、乙烯基、皮革或 木材,或模型内对锂电池进行充放电!使用烟敏或火敏报警装置对充电场所进行监控。

7、不要使用超过"1C"的电流对锂电池进行充电("C"表示电池容量)。

8、不要使锂电池过热!如超过 60 摄氏度,电池应置于防火环境中。

9、过冷或充满电时, 锂电池不会再充电。

10、在充电过程中电池温度上升是正常的,但如果充电器或电池过热,立刻将电池从充电器拔下!!必须 对曾经过热的电池密切观察以防潜在的损害,如果你怀疑电池已经损坏,请不要继续使用。

11、如果您观察到锂电池的封装有破损,请不要再使用。仔细检查电池,哪怕是一个小的凹痕、裂纹、分裂、穿刺或电线和连接器的破损。不要使电池内部的电解质接触到眼睛和皮肤——如果接触到电解质要立刻用 水冲洗。如果怀疑电池受损,将电池放置到一个防火环境中至少30分钟。

12、不要将电池放置在明火或加热器旁边。

13、不要在超过电池额定放电电流下对锂电池进行放电。

14、一定要将锂电池储存在一个远离儿童的安全地方。

注意

发射机 (ET08) :

ET08采用**锂电**的供电方式,工作电压适应范围3.7V-6V。使用超出工作电压范围的电源,将可能会烧坏机器!

ET08的USB接口充电,可使用常见的手机充电器 (5V) 进行充电!

接收机 (RF206S) :

接收机工作电压适应范围 3.8V-6.5V,具有防反插保护槽(电源输入极,正负接反保护功能)。使用超出工作电压范围的电源,接收机将会烧坏。

安全注意事项

教练接口

! 务必遵守

发射机的教练/模拟器接口:

教练接口采用3.5mm音频接口的输出方式,本套装不配教练数据线,如果要使用教练功能则需要另外 单独购买教练数据线!

警告:本接口仅作为教练数据传输接口,禁止使 用供电(高压)端子插入以免损坏发射机。

建议:您可以在天地飞科技淘宝店或其他模型专 营网店或者实体店咨询购买连接线。

USB接口

发射机的USB接口:

ET08采用标准的USB接口,用于升级功能和充电 能L

- 功能!
 - 警告:禁止使用超过USB标准电压的供电(高
- 压)端子插入以免损坏发射机。

使用之前

产品特点

发射机

型号: ET08 通道:8通道 工作电压: 3.7V-6V (1S锂电) 工作电流: 150mA 应用: 直升机、固定翼、多旋翼、机器人、车、船 分辨率: 全通道4096分辨率 频段: 2.4GHz (双向) 跳频:全新FHSS跳频 (64点、3.6ms) 储存:16组机型 编程:5组编程混控 语言:中文、英文 升级: USB在线升级 显示: 3.5英寸, 128x64点阵屏 接力飞行: 支持 180/270°舵机: 支持 无线拷贝:模型数据

接收机

型号: RF206S 频段: 2.4GHz 工作电压: 3.8V-6.5V 工作电流: 80mA 应用: 直升机、固定翼、多旋翼、机器人、车、船 分辨率: 全通道4096分辨率 PWM: 6通道 PPM: 支持 W.BUS: 兼容S.BUS 双向传输: 支持 失控保护:支持 180/270°舵机:支持 接收机端口设置: 支持 外部电压检测: DC 0~36V 尺寸: 36x20x12mm

基本配置

ET08 发射机 *1 RF206S 接收机 *1 (含外接电源检测线 *1) 简易说明书 *1 保修卡 *1

发射机

接收机

保修卡&简易说明书

使用之前

发射机各部分的名称

使用之前

开关的配置及类型

电源灯:左,电源指示灯,红色。 射频灯:右,RF射频指示灯,蓝色。

电源开关:长按3秒开、关机。

SA: 短柄两档, (自定义功能) SB: 长柄三档, (自定义功能) SC: 长柄三档, (自定义功能) SD: 短柄两档, (自定义功能) LD/RD: 旋钮, (自定义功能) T1-T4: 微调, (自定义功能)

TRAINER: 教练接口。

五向按键:上、下移动光标按键,左、右加减按键,中间确认键(长按复位)

HOME/MON.: 主页/监视器按键, 短按主页, 长按监视器。 EXIT/LOCK: 退出/锁屏按键, 短按退出, 长按锁屏。

天线的方向

() 务必遵守

ET08在使用时避免金属物质遮盖天线位置。

以下是"天线位置指示图"和"信号强度与位置关系示意图",实际使用请根据需求调整角度。

主界面2

介绍和操作

- 1-20、定时器1
- 2、回传数据(接收机电压)
- 3、回传数据 (外部电池电压)
- 4-5-7-8、微调监视器,实时显示微调状态
- 6、"主界面2"按钮, 切换到主界面2
- 9、模型名称,选择进入模型选择界面
- 10、机型,选择进入当前模型功能界面
- 11-21、定时器2
- 12、用户名,选择进入自定义命名
- 13、发射机电池电压
- 14、锁屏状态 (EXIT/LOCK键长按2秒切换)
- 15、接收机信号强度
- 16、学员(S)、教练(T)、8通道模拟器(8)模式状态
- 17、油门锁定(回)和油门熄火(回)状态
- 18、飞行模式,当前的飞行模式
- 21、回传数据(接收机电压)
- 22、回传数据 (外部电池电压)
- 23、主界面2, "确认键"、"返回键"或者"Home键"切换回"主界面1"

发射机指示灯

LED	状态
电源灯亮	开机
电源灯灭	关机
RF灯灭	关机、学员或模拟器模式
RF灯亮	正常通信、教练或普通模式
RF灯闪烁	进入对码状态

摇杆调整方法

摇杆头的高低调整:

- 1、先逆时针松开上节杆头
- 2、再扭动下杆头进行调节高度
- 3、顺时针扭动上杆头进行锁紧

左右手模式更换方法

不建议自行更换左右手,否则有可能损坏发射机。(自行更换左右手将失去免费保修项目)) 所需工具:3毫米十字螺丝刀,1.5毫米内六角螺丝刀

首先要打开发射机外壳,再按下图所示方法操作:

①把轴承座螺钉松开(螺钉不需要全部退出来),依次取下弹簧、支架7和支架5后把螺钉扭紧;再把取下的弹簧、支架7和支架5装在另一个总成对应位置(装配前也要先把轴承座螺钉松开),调节螺钉3的高度可以改变摇杆的松紧。

②取下油门簧片的螺钉、油门簧片和油门套,装在另一个总成对应位置,根据自己的习惯,选择油门滑动的类型(带齿的和光滑的)并调节螺钉(螺钉1或者螺钉2)的高度使油门的阻尼符合自己的习惯。

油门结构修改完毕后,开机,进入**系统设置→摇杆模式,**选择对应操作模式,更换左右手后务必要进行控制 杆校准!

如果需要支架5等组件(比如组装双回中结构所需的零件!),可到天地飞科技淘宝店购买零配件。

接收机的使用说明

接收机LED状态列表

工作 模式	LED	动作	状态
	紫色	常亮	PWM模式工作正常
工作	绿色	常亮	W.BUS模式工作正常
	蓝色	常亮	PPM模式工作正常
	红色	常亮	无信号
	红色	慢闪	低电压
	橙色	慢闪	对码

对码操作:通电后,长按SET 3秒,橙灯慢闪,等 待发射机对码指令【通信设置→对码】。

PPM/W.BUS/PWM接口工作模式选择:进入界面【通信设置】-【接收机端口设置】,切换接收机最后端口(**默认6通道**)的工作状态,返回上级界面保存设置。

接收机工作电压为3.8-6.5V,每个端口都可以作为电源输入端,但是**连接电源时注意正负极性,不要** 使用超过接收机工作电压的电源,否则会损坏接收 机!

RF206S是新系列的高性能接收机,拥有6个 PWM通道、最后一个端口为PWM/PPM/W.BUS通道 (自定义)。

为了获得最优信号检索性能,两根天线在安装的 时候最好以90°相交的方式处理,如右图。

! 务必遵守

注意:

1、如果接收机天线周围有金属等导体的话,会影响到接收机的性能,此时应将天线绕过导体,配置于机身的两侧,并且最好使天线外露于模型机壳之外!这样,不管飞行姿态怎样,都可以保持良好的信号接收。
2、天线安装时。天线的无屏蔽段线芯要对金属,碳纤等导体材料尽可能远离。天线线缆避免大角度弯

折,并且末端线芯尽可能保持笔直。

3、如模型机身被碳纤,金属等导电性材质覆膜的话,天线部分必须要伸出机身以外。同时天线伸出后也 不要和导电性机身贴的过近。此外,天线也要远离燃料箱。

接收机有外部电池检测接口,可通过发射机查看电调、电池等电压信息,并且发射机可单独对接收机电压和外部电压进行报警设置。使用检测线时注意正负极性!

接收机和舵机的连接示例-固定翼

下图为固定翼的连接示例。请配合实际使用的机翼类型和尾翼类型进行舵机连接。

舵机连接位置(固定翼,参考摇杆模式"模式1") 下表为不同机翼类型・尾翼类型的(系统默认设置)

舵机连接位置示例。

机型	机翼	三角翼	尾翼		CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
			普通	通道	副翼	升降舵	油门	方向舵	起落架	辅助1	辅助2	辅助3
	1 副翼			控制	J1	J3	J2	J4	SD			
				微调	T1	Т3	T2	T4				
				通道	副翼	升降舵	油门	方向舵	起落架	辅助1	辅助2	辅助3
	1 副翼		V型尾翼	控制	J1	J3	J2	J4	SD			
				微调	T1	Т3	T2	T4				
				通道	副翼	升降舵	油门	方向舵	起落架	升降2	辅助2	辅助3
	1副翼		副翼升降舵	控制	J1	J3	J2	J4	SD			
				微调	T1	Т3	T2	T4				
				通道	副翼	升降舵	油门	方向舵	起落架	副翼2	辅助2	辅助3
	2 副翼		普通	控制	J1	J3	J2	J4	SD			
固定翼				微调	T1	T3	T2	T4				
			V型尾翼 副翼升降舵	通道	副翼	升降舵	油门	方向舵	起落架	副翼2	辅助2	辅助3
	2 副翼			控制	J1	J3	J2	J4	SD			
				微调	T1	Т3	T2	T4				
				通道	副翼	升降舵	油门	方向舵	升降舵2	副翼2	辅助2	辅助3
	2 副翼			控制	J1	J3	J2	J4				
				微调	T1	Т3	T2	T4				
		1				[I
				通道	副翼	副翼2	油门	方向舵	起落架	升降舵	辅助2	辅助3
		2副翼	普通	控制	J1		J2	J4	SD	J3		
				微调	T1		T2	T4		T3		
		0=122		通道	副翼	副翼2	油门	方向舵	万向舵2	升降舵	辅助2	辅助3
		2副翼	翼梢小翼	控制	J1		J2	J4		J3		
				微调	T1		T2	T4		Т3		

接收机和舵机的连接示例-直升机

下图为直升机的连接示例。请配合实际使用的十字盘类型进行舵机连接。

舵机连接位置(直升机,参考摇杆模式"模式1") 下图为不同十字盘类型下的舵机连接位置。

机型 十字盘 CH1 CH2 CH3 CH

机型	十字盘		CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
直升机		通道	副翼	升降舵	油门	方向舵	陀螺仪	螺距	辅助2	辅助3
	H-1	控制	J1	J3	J2	J4		J2		
		微调	T1	Т3	T2	T4				
	HR3	通道	副翼	升降舵	油门	方向舵	陀螺仪	螺距	辅助2	辅助3
		控制	J1	J3	J2	J4		J2		
		微调	T1	Т3	T2	T4				

十字盘类型

*此图仅为举例说明。根据多旋翼机体和飞行控制器的不同,连接方法也会发生改变。 请根据所使用的多旋翼套材的使用说明书进行连接。

连接位置 (多旋翼机型,参考摇杆模式"模式1")

机型		CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
	通道	副翼	升降舵	油门	方向舵	姿态选择	辅助1	辅助2	辅助3
多旋翼	控制	J1	J2	J3	J4				
	微调	T1	T2	Т3	T4				

基本操作-固定翼的基本设置顺序

1. 模型的调用

ET08 发射机在出厂时内置16组机型,可以使用 【系统设置】下的【模型选择】,调出已有模型。

"重命名"功能便于对名称已经被设置的模型进行选择调用。

主页面上会显示当前使用的模型名称。在飞行、 更改参数设置之前一定要先确定是否选择了正确的模 型。

当新添加了一个模型的时候,请根据所使用的模型在【系统设置】下的【机型选择】进行选择,如果使用了新的接收机,还需要进行接收机的对码操作 (【通信设置】-【对码】)

2. 模型类型的选择

使用【系统设置】下的【机型选择】功能,选择 与模型飞机相符的模型类型、机翼类型和尾翼类型。

比如:左右装有副翼舵机的机体,可以在主翼类型中选择"2副翼",并在【辅助微调】和【舵角设置】分别对两只舵机进行调整。

3. 机身控制部分连接

按照模型飞机产品说明书的要求对副翼、升降 舵、油门、方向舵等进行安装。连接方法可以参考 《接收机和舵机连接示例-固定翼》(P16)章节。

注意: ET08 发射机根据模型类型的不同,对于通 道的分配也有所不同,因此请特别注意(在【通用功 能】下的【通道设置】选项里面,可以对每一个通道 的分配情况进行检查)。

●如实际连接的动作方向和需要的方向相反,可以 在【通用功能】下使用【正反设置】进行相应的方向 调整。

●对油门部分进行安装,确保化油器/电子调速器 可以全开,也可以完全关闭。

●使用【通用功能】下的【舵角设置】调整各舵面的行程量和转动角度,使用【辅助微调】功能和【舵角设置】功能进行细微调整。为了保护连杆,可以在【舵角设置】功能项中设置行程限制位置。【舵角设置】功能项可以调节每一个舵面的上下或左右动作量和限位。

4. 油门熄火的设置(固定翼飞机)

【油门熄火】功能使我们可以在不影响油门微调 位置的条件下仅拨动一个开关即可关闭发动机(怠速调 整后)。

*【油门熄火】功能启动后,发动机熄火位置就会固定。如果不需要油门熄火开关,请使用下面的【低 怠速】设置功能。

请使用【模型功能】下的【油门熄火】功能选项 进行设置。在激活熄火功能并选择对应的开关后,油 门位置将调整至化油器完全关闭。为了安全起见,油 门熄火功能对应的油门控制杆位的激活位置可以单独 设置。

5. 大小动作的设置

【大小动作】功能是配合操控感觉、调整舵角的 功能,可以让操控更为顺手。舵机基本的动作幅度是 在【通用功能】下的【舵角设置】功能中进行设置, 配合操控感觉,再通过【通用功能】的【大小动作】 比率功能调整舵角。另外,在设置舵角比率后,还可 通过开关或飞行模式切换,配合飞行动作,调出所设 置的舵角。

6. 空气刹车

【空气刹车】功能是在着陆等情况下, 下滑角度 虽大但不希望提升速度时使用。此功能只能在【通用 功能】-【机型选择】机翼选择"2副翼"以上的机型 上使用。

*通常情况下会将左右副翼同时设置为上扬动作, 功能启动时机头的俯仰可通过升降舵混控进行修正。

7. 飞行模式

出厂默认设置每个模型仅分配一个飞行模式。仅 有一个飞行模式也可无障碍的支持基本飞行,但是如 果在比赛等竞技场合,还是需要更详细的设定。通过 【模型功能】中的【飞行模式】功能,可以更有效的 选择所需要的飞行模式。还可针对条件切换的开关以 及条件的名称进行设置。

当飞行模式设定完成后,需操作开关,在界面上 所显示的条件名称进行动作确认。

基本操作-直升机的基本设置顺序

1. 模型的添加和调用

请参照前一节《基本操作-固定翼、滑翔机的基本 设置顺序》的第一部分内容说明。

2. 模型类型和倾斜盘类型选择

如果已经设定了一个模型,请在【系统设置】中 使用【机型选择】选择界面选择直升机"类型"和 "十字盘类型"。

3. 飞行模式的设定

默认设置时,包含普通模式(默认命名)条件共 计有3个条件已被设定。

- ●普通
- ●特技
- ●锁定

*默认设置中未设置此开关

常见飞行模式设定举例:

●普通: (用于默认设置,开关关闭)通常在启动、悬 停时使用。

●特技:通常用于失速倒转, 筋斗等特技动作。

●油门锁定:通常在自旋状态下使用。

这几种操作条件的优先级是

- 1、油门锁定
- 2、特技
- 3、普通

4. 机体控制连杆安装

按照模型直升机产品说明书的要求对油门、尾 桨、副翼、升降舵、螺距等进行安装。连接方法可以 参考《接收机和舵机连接示例-直升机》(P17)章 节。

*在【通用功能】下的【通道设置】选项里面,可 以对每一个通道的分配情况进行检查。

●如实际连接的动作方向和需要的方向相反,可以 在【通用功能】下使用【正反设置】进行相应的方向 调整。除H-1模式以外,还可以使用【十字盘设置】 功能对方向进行更改。

●设置陀螺仪的动作方向(此项为陀螺仪功能)。

●油门部分的安装应确保微调全闭时化油器可以完 全关闭。

●使用【通用功能】下的【舵角设置】调整各舵面 的行程量和转动角度,使用【辅助微调】功能和【舵 角设置】功能进行细微调整。为了保护连杆,可以在 【舵角设置】功能项中设置行程限制位置。【舵角设 置】功能项可以调节每一个舵面的上下或左右动作量 和限位。

十字盘校正(H-1 模式除外)通过【十字盘设置】功 能的校正混控,可以对十字盘动作进行校正。当螺 距、副翼、升降舵的操作会导致十字盘偏离正确方向

肘,就需要使用这一功能。

另外螺距在低点、高点的连杆位置也可以进行校 正,这用来保证十字盘在全行程范围的水平状态。

5. 油门曲线、螺距曲线的设置

从【模型功能】中调出【油门曲线】或【螺距曲 线】,并针对各种飞行模式进行曲线设置。

〈设定举例〉

用飞行模式选择开关调出每一个飞行模式下的油 门曲线。

油门曲线的设定举例如下:

●油门曲线(普通条件)

普通曲线使用普通线型,在悬停点(操纵杆50%的位置)附近设置基本螺距曲线,这一曲线通常和螺 距一起调整,以保证发动机转速的均匀和上升/下降动 作易于操控。

●油门曲线(特技条件)

此设定是当油门操纵杆在低位时,仍可维持旋转 的设定。

●油门曲线(锁定条件)

注意:油门锁定曲线用于自旋着陆动作。请确定油 门控制杆的最低位置(0%)的比率是0%(这是初始 设置)。

螺距曲线设定举例如下:

用飞行模式选择开关可以调出每一个条件下的螺 距曲线。

●螺距曲线(普通条件)

螺距曲线中通常情况下将悬停桨距设定为大约 +5°~+6°。一般情况下悬停时油门操纵杆以位于 50%位置作为标准。

50%业目F内小准。

*稳定的悬停与油门曲线设定也有关系,综合使用 油门曲线调整和桨距曲线调整,更易于达到稳定的悬 停。

●螺距曲线 (特技条件)

特技1的螺距曲线通常用于空中飞行,一般设定为-7°~+9°。

●螺距曲线(锁定条件)

在油门锁定,自旋降落条件下,在正、负螺距两 个方向上都要把螺距设置到最大。例如从-7~+12°。

6. 油门锁定的设定

在【模型功能】菜单下调出【油门锁定】功能的 设置界面,使用【飞行模式】开关切换到油门锁定条 件界面。

锁定位置设置:	油	门锁定	
此功能用于设	状态	禁用	10
定油门锁定状	<u> </u>		-11
态下舵机所处	化全合署 -	1768	-11-1
的工作位置(熄	7月11日 - 11月11日 - 11月111日 - 11月11日 - 11月11日 - 11月11日 - 11月11日 - 11月11日 - 11月111日 - 11月111100 - 11月11100 - 11月11000 - 11月11000 - 11月11000 - 11月110000000000	11.0	- H k
火或怠速位置)。	迎问	U	لالل

基本操作-直升机的基本设置顺序

7. 倾斜盘混控校正副翼、升降舵和桨矩的交互 作用

通过【模型功能】下的【十字盘混控】,可以 调整副翼、升降舵、螺距的各个操作的混控比例, 以确保在每个条件下修正倾斜盘。

8. 油门混控设定

十字盘副翼、升降舵动作会导致发动机转速的 降低,此现象可以通过【模型功能】下的【油门混 控】进行补偿,另外,机身旋转时候顺时针、逆时 针的扭矩变化也可以得到补偿。

9. 陀螺仪感度调整和模式切换

在【模型功能】下的【陀螺仪】混控功能中, 可以调整每一个条件或开关位置下的陀螺仪敏感度 或是进行模式切换。

- ●普通(悬停飞行): 陀螺仪敏感度最大。
- ●特技/油门锁定: 陀螺仪敏感度最小。

10. 油门熄火的设置

飞行结束时,无需改变油门微调的位置,只需 拨动一个熄火开关,即可关闭发动机。

在【模型功能】的【油门熄火】功能中进行设 置。把油门控制杆置于怠速,调整熄火舵机转动位 置直到刚好可以关闭风门并且动作不受阻碍。

*油门触发位置可单独设置。

模型选择

界面路径:【系统设置】→【模型选择】

ET08可以储存16组的模型数据,并可以灵活编辑处理数据组的信息。

注意:发送接收模型数据需要两台发射机为同型号、同固件版本,并且打开RF。

选择:选择要运行的模型,按"确定"键弹出操作选项。当前运行的模型,名称将显示在主界面。 重命名:可以重命名所选模型。

复制:复制所选模型的数据覆盖另一个模型,用以备份模型数据,或者对差异不大的模型进行快速添加和 配置。

发送:分享所选模型数据。发送所选模型数据到另一台ET08,方便模友的沟通和交流。 接收:所选模型的位置,用来接收储存另一台ET08分享的模型数据。

*模型名称长度为8个字符,只支持英文命名。

模型选择示例(切换到需要操作的模型):

所选模型(反色显示),选择五向键的"确定"键选择模型,右侧操作选项弹出。 复制模型时注意模型组名称,避免错误操作。

一号遥控器发送模型数据与二号遥控器接收模型数据的操作:

①一号遥控器:选择需要分享的模型组数据(如 "Model 1"),选择右侧界面显示的"发送"按钮,确 认选择,提示弹窗中选择"是",模型组数据等待接收中。

②二号遥控器:首先挑选保存的模型组位置,在左侧模型列表中选择一个未被设置的模型并确认选择,右侧界面显示"接收"按钮,确认选择,提示弹窗中选择"是",二号遥控器开始接收模型组数据。

*【发送】与【接收】功能的发射机顺序关系:操作该功能时,先进行【发射】操作,然后进行【接收】操 作。

*发送、接收操作距离请在在0.5米内。

"复制"功能,目标模型数据被参考模 注意 型数据覆盖。请确认目标模型数据不再需 要,再做复制操作。

机型选择

界面路径: 【系统设置】→【机型选择】

固定翼可以选择3种主翼类型和3种尾翼类型。直 升机可以选择2种斜盘类型。每种类型的模型数据都有 默认预设。

机型类型: 直升机、固定翼、多旋翼。

直升机十字盘: H-1、HR3(120°)。

机翼类型(固定翼、滑翔机): -机翼:1副翼、2副翼、三角翼。 -尾翼:普通、V翼、副翼升降舵;普通、翼梢小 翼(三角翼)。

保存设置: 类型确定选择完成后,选择右下角 "确定"按钮进行保存设置。

设置"机型类型"时,选择界面会依次弹出,完成类型选择。 如果不选择"确认"保存操作并返回上级界面,则不保存修改。

操作示例:设置模型为直升机 (HR3) ①选择"机型类型",弹出机型列表。 ②选择"直升机",弹出十字盘列表。

更换"机型类型"时(当前模型的所有 数据将会被清除!),模型数据重置为新选 机型的出厂配置。所以必须确认不需要这些 数据时,或者通过【模型选择】功能"复 制"做模型数据的备份,再做更换操作。同 上,如"十字盘"、"机翼类型""尾翼类 型"的操作,对应操作将会对当前模型数据 清除和变更为新选类型的默认参数,因此需 要重新设置所有模型功能。 ③选择"HR3",选择"确认"按键保存修改。 完成设置!

教练

界面路径:【系统设置】→【教练】

教练员可以根据自己的飞行经验和操作水平,辅助学员学习飞行技巧和提升飞行水平。教练机和学员机之 间需要使用专用的教练线(需另购)来进行连接,教练机必须打开教练模式,学员机才可进行操控。当教练开 关断开后,将返回到教练发射机控制飞行。当学员机飞行出现危险或偏差过大时,可立即切换,以确保安全。

WFT08/09作为教练机时,请购买通用的模拟转接线、3.5mm公对公音频线。(教练线和音频线需另外购 买。两芯三芯均可使用。)

*以下教练功能以同款机型为例。

教练机的设置:

模式-教练,选择控制开关,通道状态→按需求开 启。

学员机的设置:

模式-学员。

*通道默认为全开启,可视模型和实际应用情况进 行调整。

显示

界面路径: 【系统设置】→【显示】

调节显示背光的对比度、亮度、关机时间、锁屏时间,以便适应不同使用环境和节能需要。

参数值的设置:

背光时间,默认30秒,15秒、30秒、1分钟、2分钟、5分钟、10分钟、常亮。 自动关机时间,默认关闭,30分钟、40、50、60分钟、关闭。 自动锁屏时间,默认关闭,15秒、30秒、1分钟、2分钟、5分钟、10分钟、关闭。

	高亮度显示,会使得发射机能耗提高,
敬止	会影响发射机工作时长,请注意设置好发射
百日	机电压报警。注意电池电量,避免发射机低
	电量工作。

用户名

界面路径: 【系统设置】→【用户名】

可以自定义模型名称。

报警电压

界面路径: 【系统设置】→【报警电压】

通过设置报警触发值,在低电压时进行报警提示。避免控制系统在低电压状态下长时间运行造成意外。

参数值的设置(发射机报警值为例):

选择"发射机"数值框,根据电池寿命和性能等因素,选择参数调节按钮。

发射机,默认3.7V,范围:3.5-6V。 接收机,默认4.2V,范围:3.8-6.5V。 外接电压,默认0V,范围:0-36V。

*以上数据默认为锂电为准。其他电池类型,请根据所用电池的使用说明书进行参考设定。

提示音

界面路径: 【系统设置】→【提示音】

飞行过程中异常或者已规划的声音提示。

语言

界面路径: 【系统设置】→【语言】

选择界面显示的语言, ET08提供了中文、英文。

_ _ _ _ _ _ _ _

语言切换:

当前为中文界面,点击切换语言。

摇杆模式

界面路径:【系统设置】→【摇杆模式】

提供4种操作模式选择,另外可在【通道设置】自定义操作模式。

30

摇杆校准

界面路径:【系统设置】→【摇杆校准】

出厂已经对摇杆进行了校准,如果摇杆的中心位置发生了变化,需要使用这一功能对摇杆进行校准。

数据重置

界面路径: 【系统设置】→【数据重置】

重置发射机选定的参数设置。"恢复出厂设置"操作数据量较大,执行该操作时请耐心等待。

系统信息

界面路径: 【系统设置】→【系统信息】

显示系统版本信息和系统升级入口。还有天地飞 科技的微信公众号,用微信扫一扫添加关注,发送 "ET08升级包",可以阅览或者下载相关信息资料。

升级

升级过程需要使用到电脑(目前支持 WINDOWS系统WINXP\7\8\10),主要步骤有以下 几点:

①驱动安装;
 ②发射机升级;
 ③验证升级。

升级包获取方式

① 官方网站下载。登录<u>www.wflysz.com</u>,点开 <u>ET08</u>产品页面,点击产品描述上方的"支持下载", 查找相关的下载链接,点击右方的下载按钮进行下 载。

② 微信PC端下载。登录微信,打开"天地飞"微 信公众号,发送文字"ET08升级包",会收到最新的 升级工具包的下载链接,点击驱动的链接,可以直接 下载保存到PC端。

具体安装方式,请参照升级包内说明,或者登陆 官方网站,在"技术支持"下的ET08机型"常见问 题"查看升级说明。

如果无法安装,请联系客服!

注意	升级过程中请保证发射机电量充足。
警告	升级包用错,可能使机器出错无法使 用!导致无法再强制升级!

*升级工具包版本号根据下载的版本而变化!

锁屏设置

界面路径:【系统设置】→【锁屏设置】

设定锁屏状态下"五向键"、"菜单/退出"、"微调"按键的启用情况。

长按"EXIT/LOCK"键进行操作锁定和解锁。

五向键: 锁屏时锁定五向键操作功能。 菜单/退出: 锁屏时锁定 "HOME/MON." 、"EXIT/LOCK"键。 微调: 锁屏时锁定T1-T4微调按键。

通信设置

对码

界面路径: 【通信设置】→【对码】

对码功能用于发射机和接收机的匹配。

遥测:数据回传功能。主要应用于功能判断和数据分析,关闭会影响安全功能的使用。默认开启,建议开 户

启! 模式:工作模式的选择(默认工作模式A)。请参考下表,表格所注通道定义为默认配置,可通过【接收机

端口设置】进行自定义分配通道。

默认连接RF206S通道接收机默认通道定义

拉收扣任博	通道定义
按収加细管	模式A/B
1	1
2	2
3	3
4	4
5	5
6	6

对码: 立即进行发射机和接收机的对码操作。选择 会弹出操作确认框。

对码操作步骤 (默认工作模式A)

1、发射机,开机进入菜单【通信设置】→【对码】,待机。

2、接收机通电,SET键长按3秒,LED橙色灯闪 烁。

3、发射机,默认开启遥测功能,选择对码"开始"按键,RF灯闪烁。

4、验证对码方法:

亮。

①成功对码,接收机LED灯变为绿、蓝、紫灯常

②接上舵机,操作发射机,对应舵机有同步动作输 出即对码成功。

连接RF207S/09S的默认通道定义

按收扣圩埔	通道定义				
安収加细管	模式A	模式B			
1	1	7			
2	2	8			
3	3	3			
4	4	9			
5	5	10			
6	6	11			
7	7	12			
8	W.BUS/PPM	W.BUS/PPM			
9	W.BUS2	W.BUS2			

	1、发射机和接收机必须近距离(小于
	1米);
	2、发射机在模拟器、学员模式下无法
	进行对码操作(【系统设置】→【教练】 进
	行设置);
	3、附近没有其它天地飞2.4GHz系统正
注意	在进行对码操作;
	4、进行对码的过程中,如需退出对
	码,按返回键。
	5、对码完毕,必须进行连接验证。
	6、遥测:对码时禁用该功能会影响
	【距离测试】【报警电压】【BUS舵机设
	置】【遥测】等功能的使用。

通信设置

遥测

界面路径: 【通信设置】→【遥测】

遥测界面显示接收机回传数据。

PPM/W.BUS

界面路径: 【通信设置】→【PPM/W.BUS】

切换接收机PPM/W.BUS输出模式。 *不同接收机,端口不同。

① 连接接收机的情况下,进行模式切换,返回上级菜单并保存更改。

② 请参考"接收机使用说明"章节(15页)"PPM/W.BUS接口工作模式选择",接收机也可以直接切换 6端口的模式。

*切换完成后,可通过接收机状态灯查看是否成功。(参考接收机工作状态表格)

接收机端口设置

界面路径: 【通信设置】→【接收机端口设置】

该功能用于自定义接收机的端口输出功能通道,对应通道功能请到【通用功能】中的【通道设置】进行设 置。

所用接收机不同,将会有不同的设置界面,默认设置将有所不同。 RF206S所有端口皆可自定义通道,但是PPM和W.BUS只能设置在6端口。

注意事项:【接收机端口设置】需要在只连接一个接收机的情况下进行设置。

<u>接收机端口设置_1/2</u>	<u>接收机端口设置 1/2</u>
端口 通道 端口 通道	端口 通道 端口 通道
$1 \ 1 \ 4 \ 4$	1 7 4 9
2 2 5 5	2 8 5 10
3 3 6 6	3 3 6 11
接收机端口设置 2/2	接收机端口设置 2/2
端口 诵道	端口 诵道
7 7	7 12
8 8	8 W.BUS
999 复位	9 W.BUS2 / 复位

模式A

模式B

_ _ _ _ _ _ _ _ _ _ _ _ _

端口设置说明:

① 如上图,端口1,系统默认为通道1,您也可以设置成2-18通道。

② "复位"按钮可以重置所有端口为默认配置。

*设置需连接接收机,进入界面读取当前接收机参数,退出界面当前接收机保存设置

失控保护

界面路径: 【通信设置】→【失控保护】

使用此功能,当接收机无法正常接收信号时,自动运行,让舵机摇臂移动到预先设定的位置上(预设动 作)。用以保护飞机,减少不必要的损失。

对于每一个通道,可以设定三种保护模式。 ① 保持:保持模式,失控后舵机保持在失控之前最后的操作位置上不变。(保持动作)。 ② F/S:失控保护模式,失控后舵机转动到预先设定好的位置上(预设动作)。 ③关闭:关闭当前通道输出。(仅限一些特殊模型或部分飞控板检测端口使用)。

	失控保护	1/2	
1副翼	F/S	0%	F/S
2升降	F/S	- : <mark>0%</mark> ;	
3油门	F/S	0%	(F
4方向	F/S	0%	

Gi:点击对应数值所在的按钮或者按下确认键进行获 当前摇杆或者开关位置参数。 ·/S值只有在F/S模式下才能显示和设置)

为安全起见,请务必设置失控保护功 能。尤其要设定油门通道的失控保护功能, 警告 这样固定翼飞机的飞行速度会降低,而直我 机会从悬停状态减速。失控导致的飞机高; 坠落是非常危险的。

务必遵守 (!)

如果你的操作不能使模型以非预期的姿态运动, 务必刻降落检查接收机电量或者机体。

参考:模型失控是非常危险的,所以设置此功能时应当小心谨慎,可以参考以下建议,亦可在天地飞技术 支持(QQ群296715945/336558828)进行咨询。

设定参考(仅作建议设置,具体设置请按个人实际飞行情况进行设置):

1、直升机油门设定为最低值,其余通道就设定为平稳飞行即可。

2、固定翼/滑翔机油门设定为最低或者低怠速,其余通道设定为平稳飞行(或者盘旋)即可,因为固定翼 /滑翔机没有动力也可以滑落。

3、多轴请参照飞控说明书。

参数值的设置(固定翼3通道值设置失控保护模式 为例):

模型设置要求:固定翼通道3默认为油门通道,我 们需要模型丢失信号后进行减速滑翔降落。

操作:点击通道3右侧按钮,切换到 "F/S" 模 式,按键右侧出现数值按钮,发射机油门通道打到最低 的动作,从而避免造成损失和损害。 油门位置时,点击通道3的数值按钮(或者光标在通道 3数值按钮上时点按确认按键)进行当前通道动作设 置。

*具体失控保护的动作预设与实际模型有关,请查 看模型说明书。

(设置需连接接收机,退出此操作界面时【失控 保护】所有设置的参数自动同步保存到接收机)

另外的保护功能:

ET08提供了主动保护的功能,开启遥测功能, 只要检测到接收机仍然在通电工作,那么发射机是需 要进行确认才能关机!它可以避免无意关机造成的接 收机主动进入失控保护状态,使得模型做出意外危险

接力飞行

界面路径: 【通信设置】→【接力飞行】

此功能是使用两台发射机、两个接收机(**拥有W.BUS2接口**),实现远距离接力控制的一种飞行控制模 式。主机和副机各自与接收机对码,副机接收机的PPM/W.BUS接口与主机接收机的W.BUS2接口连接。主机 发射机在【主菜单】-【通信设置】-【接力飞行】-开启功能和设置信号控制开关。

*【接力飞行】功能只需要主发射机设置功能启用即可,副发射机不需另外设置【接力飞行】 *【接力飞行】需要接收机的W.BUS2接口支持!(如RF207S、RF209S都有W.BUS2接口。)

舵机频率

界面路径: 【通信设置】→【舵机频率】

使用数字舵机时,调整接收机输出频率以匹配舵机的工作频率,更好的发挥舵机性能。

调整接收机的输出频率,行程50Hz~300Hz,退出时设置成功。

该功能需要舵机支持,并且需要发射机和接收机 处于正常通信的状态,设置才能有效! 系统默认 50Hz,不要随意更改舵机频率参数。否则有损坏舵 机的可能!

BUS舵机设置

界面路径:【通信设置】→【BUS舵机设置】

*本功能需要接收机的支持,需要接收机拥有W.BUS2接口(如RF207S/RF209S)。 BUS舵机可以记忆它自己的通道和不同的设置,通过接收机的W.BUS2接口连接舵机,可以在ET08上进行 舵机通道配置。(天地飞W.BUS系统兼容S.BUS舵机!)

注意:

①使用本功能前提,需要开启【遥测】功能、接收机已正常连接

②设置时每次只能连接1个BUS舵机进行设置。

③使用BUS舵机时要保证供电充足,否则舵机将会出现输出不稳定等异常情况!

设置方法:W.BUS功能的使用主要是为BUS舵机进行分配通道参数,分为3个主要步骤。

设置前提:发射机和接收机已对码(开启遥测),并正常通信。

一、读取BUS舵机ID。

连接BUS舵机到接收机的"W.BUS2插槽",发射机点击"读"按钮。

二、通道分配。

在"通道"设置项根据舵机的功能选择对应的通道。点击"写"按钮,设置舵机通道并完成参数保存,退 出设置界面。

三、验证舵机通道。

打开监视器, 舵机连接到 "PPM/W.BUS" 接口, 操作摇杆或者开关旋钮 (当前连接舵机所设置的通道)。

180/270°舵机

界面路径: 【通信设置】→【180/270°舵机】

180/270°舵机,是大舵角舵机的旋转行程的设置,默认禁用。

一般使用在:坦克或者机器人等动作行程量大的舵机设置上。

*该功能需要连接接收机后才可以设置。

距离检测

界面路径: 【通信设置】→【距离测试】

距离测试主要用于控制距离的测试。

对码时开启遥测功能,对码之后,发射机接收机 正常连接才能使用该功能!只有进入该界面,拨动 SD开关后,功率才会降低!控制距离与实际使用环境 有关! <u>距离测试</u> 拨动SD开关, 降低发射功率。 功率降低 信号强度100%

· • • • • • • • • • •

使用方法:

1、进入该界面,拨动SD开关。

2、发射机和接收机保持一定高度(离地面1.5米 左右),并且天线方向相同(垂直于地面向上)。

3、发射机和接收机通电,开始移动位置,移动摇 杆。

4、发射机查看界面上的信号强度,接收机查看状态灯和舵机动作是否顺畅。由此综合评价工作距离!

信号强度判断:

接收机传回信号强度,在屏幕状态栏右上角(正 常工作时的待机界面)和信号强度百分比指示(【距 离检测】功能界面)可以查看。指示条越多,百分比 值越大,信号越好。反之,则信号越差。状态栏无信 号指示条,信号强度为0%(无信号)。

*【距离测试】结果仅供参考,不作为唯一性能标准,具体视使用环境而定!

监视器

界面路径:【通用功能】→【监视器】

该界面可以了解各通道的舵机输出,进行舵机动作确认;也可以进行舵机测试工作,比如"动态"和"中 点测试"。

关闭

动态

工作模式:

-关闭:默认项,显示当前所有通道的实时输出位置。

-中点:所有通道, 舵机会在中点行程位置固定。

-动态:所有通道, 舵机会反复动作。

油门:油门通道默认关闭,避免油门通道动作输出,造成危险。

监视器的应用:

① 舵机行程动作(通道)输出实时动态查看。
② 舵机行程端点和中点的测试。

舵机测试功能:

① 中点模式:所有通道(舵机)都处在中立点,可以微调各个通道的舵机中立位置,由此进行模型的精细 对较调整。

② 动态模式:所有通道(舵机)都循环来回在两端点之间转动,通过行程调整,由此可以对较调整各通道的舵机在机体动作的幅度是否适合模型。

通道设置

界面路径:【通用功能】→【通道设置】

当选择模型和机翼类型时, 舵机输出通道和功能组合已经被预设了。如有需要, 可以随意更改舵机输出通 道的组合, 功能(副翼、升降舵等)、控制(摇杆JI-J4、开关SA-SD、微调T1-T4、旋钮)还有对应的微调也 可以自定义。

通道选择:当使用通道选择后,当前通道将被替换,替换后的通道将自动变更设置数据(行程调整、中立 点微调、舵机反向、失控保护等等)。(可以指定相同的功能到不同的舵机输出通道,如将升降舵分配到第2通 道[CH2]和第3通道[CH3]。)

	通道设置	1/3	副翼	方向	引擎1
	控制	微调	副翼2	方向2	引擎2
1副翼	J1	T1 📗		起落架	辅助1
2升降	J2	T2 📙	升降2	陀螺仪	辅助2
3)油门	JЗ	T3 📙	油门	姿态	辅助3

	【通道设置】功能调整后,可能需要对
注意	应调整以下参数:【舵角设置】、【辅助微
	调】、【正反设置】、【失控保护】等

正反设置

界面路径: 【通用功能】→【正反设置】

该功能可将各通道舵机的动作方向反转。

十字盘结构(HR3等)的直升机,先使用【正反设置】令螺距舵机的动作方向匹配,然后使用十字盘设置功能,设定副翼、升降舵的方向。

在一些固定翼/滑翔机的混控设定中,是由多个舵机控制同一功能,此时究竟应该对舵机进行反转、还是通 过功能设定进行反转,是非常复杂且难以分清的。针对具体的功能,请务必飞行前进行充分的实际动作检查。

大小动作

界面路径: 【通用功能】→【大小动作】

该功能可设定CH1-CH8通道的舵角行程以及动作曲线,可每个飞行模式或开关分别进行调整。当混控从一个通道应用到另一个通道,两个通道都能同时用【大小动作】功能来改变操作比率。

通道:可设定CH1-CH8通道

模式:飞行模式、开关两种控制模式。"飞行模式"模式由【飞行模式】功能设定控制开关。

舵角设置

界面路径:【通用功能】→【舵角设置】

该功能可以分别调节舵机左右两边的动作量,用于机体连接上的校正。 左右两边的行程可变量为30%-155%(CH1-CH6),默认值100%。 最大行程量限位点可以设定在0%-155%之间,默认值135%。

设定此限位点后,即使混控等操作使得舵机行程量增加,舵机的动作也不会超越限位点,从而起到锁定舵 机和保护连接的作用。

界面上显示的是每个通道的舵机实际转动量,中立位置的显示是以【辅助微调】的设置值为基础的,因此 "辅助微调"的调整变化将会影响到舵机的上下限制点位置。

定时器

界面路径:【通用功能】→【定时器】

此定时器功能,可用于飞行总时长、比赛用特定时间等多种多样的计时。有定时器1和定时器2可以设定, 并显示在主待机界面。

定时器是每个模型中独立的功能,当模型变更后,新的模型所对应的定时器会被自动调出。

定时器可以通过开关或摇杆等操作进行启动或停止。而且启动和停止的开关方向可以自行设定。正计时和 倒计时最大可设定为99分59秒。

提醒变为连续的"嘀-嘀-嘀.."的鸣响,剩余10秒时提 醒变为连续的"嘀嘀-嘀嘀-嘀嘀.."的鸣响,倒计时结 束时会有一声长鸣;然后计时仍然会继续并显示负 值。 3/3 模型计时 00:00:00 模式 **羅訓**

微调设置

界面路径: 【通用功能】→【微调设置】

在该功能中可设定数字微调的动作量以及动作模式,可选择不同飞行模式的微调联动移动,或每个飞行模 式下微调单独移动。(例如悬停和特技可分别进行微调调整。)

步进:可调行程1-250,默认步进值40(每按一次微调的动作变化量)。

T1-T4:

联动:例如T1开联动后,相应T1分配的通道会跟随动作。

开关:禁用、2档、3档,默认"禁用"。2、3挡,当做独立开关使用,可到【通道设置】进行分配应用, 通道分配后可在监视器查看动态。

条件(飞行模式):全部、单独,默认"全部"。全部模式:同一微调数据反映在所有飞行模式下。单独 模式:每个"飞行模式"都可进行单独的微调调整。

步进	联动	开关	条件
T1 🚛	关	禁用	全部
T2 $\overline{40}$	¥	禁用	全部
T3 40	¥	禁用	至部
T4 40	¥	禁用	~ 部

辅助微调

界面路径: 【通用功能】→【辅助微调】

该功能是对各舵机中立位置进行微调整的功能。另外在连杆连接状态下也可对舵面的中立进行微调整。

开始【辅助微调】设定时,必须先要将各通道数字微调(通过监视器检查)至于中心位置。

在调整【辅助微调】之前,务必先调整模型上的舵面(舵机)控制连杆,再使用【辅助微调】功能。

	辅助微调	1/2
1副翼	0	
2升隆	0	
3油门	0	
4方向	0	
	行程:	-240~+240

通道延时

界面路径: 【通用功能】→【通道延时】

该功能主要用于拟真的动作,比如起落架的收放,设置行程为0到100,默认为0(对应通道摇杆位置从一端 到另一端的延时时间即为设置的时间)。

界面显示数值越大,延时越大,动作输出越慢。

编程混控

界面路径: 【通用功能】→【编程混控】

可创建5个混控组合,可自定义选择通道或者开关旋钮等自由混控。除了可以用于创建各种机体飞行特性外,还可用于其他多种用途。

混控比率的方向可以分别进行设定。

比率模式:比率混控,进行简单的带有方向性设定的混控。 曲线模式:曲线混控,不同行程间精确控制的混控,其中"折线"可使用7个点进行精确调校。

比率、曲线编程混控的设置(参照上图组): 第一界面(1/2)

 ①选择混控1名称(混控名称是由分配了主、副通道之后,组合生成的名称,如视图为方向到起落架的 混控),进入混控配置界面。

② 要使用该编程混控需要启用该功能,所以状态 切换到启用(显示关、开,由控制开关档位决定)。 禁用时,控制开关打到激活位置是无法激活的。

③ 设置控制开关,默认空缺[--]。

④ 分配主、副通道,通道极性请通过实际操作进行确认。

第二界面 (2/2) 【比率模式】

● 设置混控比率,这里有正负两个比率可设置,可 以分别控制两个方向的混控比率。

● 设置偏置参数,调整偏置用于设置整体混控位置
关系的中点的上下偏移。

第二界面 (2/2) 【曲线模式】

- 设置混控比率,调整曲线两边方向位置。
- 设置EXP, 调整线条两边弯曲比率和弯曲方向。

● 设置点,右侧曲线框中虚线为当前点的位置,

更改比率进行上下偏移调节。

姿态选择

界面路径: 【通用功能】→【姿态选择】

该功能可以通过两个任意开关进行组合,形成最多9种不同比率的输出,每1种输出用户可以根据实际需要 自行设置,以适用于部分飞控板对多种飞行模式的使用需求。

具体请参照飞控板说明书,并根据用户自身使用习惯,设置最合理的操作方式。

箭头指示生效的位置		姿态选择	
功能状态		→1 ·1100	5.1700
控制开关1	——SB	2•1250	6.1850
控制开关2	—sc	3•1400	7.1850
	9-1850	4 • 1550	8.1850

模式说明:

最少有4个模式输出(两档开关x两档开关=四个状态)。 最多有9个模式输出(三档开关x三档开关=九个状态,如上图)。 箭头指示为当前开关档位组合的激活位置,不影响设置参数。

双引擎

界面路径:【通用功能】→【双引擎】

需在【通用功能】-【通道设置】菜单中设置引擎1和引擎2的输出通道。

在部分模型飞机、船模、车模使用两个电机作为动力驱动时,直接使用双引擎功能、可以简单的设置引擎 1、引擎2的加速摇杆和转向摇杆、并设置引擎1和引擎2的混控比率。在机器人模型、和船模模型,支持双向电 子调速器比率设置、并可以通过设置一个正反开关,快速切换控制方向。双引擎功能支持3种比率设置、每种比 率支持单独的控制开关。

引擎1

引擎2

飞行模式

界面路径: 【模型功能】→【飞行模式】

通过该功能,可以根据需要配置飞行模式,有3个飞行模式供选择。

如无需使用条件切换功能的话,不必在此页中进行设定。可以直接使用默认配置。

当设定多个飞行模式以后,它们之间的优先级以排序最后的飞行模式为最高优先级!

延时:避免切换飞行模式时因舵机位置的突然变化,或通道之间动作时间的不同步等所导致的机身晃动。 每一个通道都可以设置。如果切换的条件被设定延时,其相应的操作将会在设定的延时时间后才完成变化。

油门曲线

界面路径: 【模型功能】→【油门曲线】

EXP+7点折线,针对油门摇杆的动作调整油门输出曲线,以使发动机(电机)转数达到飞行的最佳状态。

*飞行模式:在【模型功能】→【飞行模式】中设置"飞行模式"控制开关。通过开关进行切换,分别进行功能曲线设定。

以下曲线是在默认折线调整做成的。实际设定曲线时,根据模型的指定的(或者参考值)动作量进行输入。

-标准曲线的调整:标准曲线是以悬停为中心进行设定的基本曲线。配合螺距曲线(标准)让发动机转数固定,上下控制达到最简单。

-特技曲线的调整:特技曲线,用于在高空飞行中,即使减小螺距,也可使发动机保持一定转速。配合筋 斗、滚转、3D等动作为目的,根据特技动作不同请按需求进行调整。

标准曲线

特技曲线1

特技曲线2

٦

L

4

L

.

58

螺距曲线

界面路径: 【模型功能】→【螺距曲线】

该功能为每个"飞行模式"调整螺距曲线,以获得跟随油门杆动作的最佳飞行状态。

*飞行模式:在【模型功能】→【飞行模式】中设置"飞行模式"控制开关。通过开关进行切换,分别进行 功能曲线设定。

曲线设定示例

以下曲线是在默认折线调整做成的。实际设定曲线时,根据模型的指定的(或者参考值)动作量进行输入。

标准曲线的调整:通常使用折线。标准曲线是以悬停为中心进行设定的基本曲线。配合油门曲线(标准)使发 动机转数固定,让上下控制达到最简单。

特技曲线的调整:高位螺距曲线设定的是对发动机无负担的最大螺距。低位螺距曲线是以配合筋斗、滚转、3D等动作为目的而设定的,根据特技动作不同按需求进行调整。

油门锁定曲线的调整:油门锁定曲线用于自旋着陆的下降过程。

油门锁定

界面路径: 【模型功能】→【油门锁定】

主要用于模型调试时使用。通过开关控制油门在最低位置,保证调试安全。

功能控制开关,默认[--]

油门熄火

界面路径: 【模型功能】→【油门熄火】

安全简便地使引擎熄火。油门熄火为停止引擎运转提供了一个简便的方法。一般来说可以在怠速状态下拨 动一个硬件开关即可实现。此功能不能在油门高位时触发,以防止错误的熄火操作。必须选择开关工作的位置 和方向,因为初始的设定是[--]

选择的硬件熄火开关在打开和油门杆在怠速时,调整比率值,直到引擎可以完全关闭。

此外,确认油门连杆没有拉紧或舵机没有过载。

熄火位置设置

① 状态切换为 "启用"

- ② 点击"开关"按钮,弹出"开关分配"界面,选择控制开关。
- ③ 打开所选的"熄火控制开关",发动机摇杆在怠速的状态,调整比率直至发动机(电机)完全停止。

此处请注意油门连接,不要让舵机超出行程。

陀螺仪

界面路径: 【模型功能】→【陀螺仪】

该功能用于调整陀螺仪感度。为每个飞行模式或开关设置感度和操作方式(普通模式/锁尾模式)。 一般只有普通锁尾应用时,则只需设置一组陀螺仪就可以了。

功能设置

① 使用功能时,首先在【通道设置】界面分别进行功能通道分配,并且在【通道设置】中将"开关"和 "微调"设置为[--]。

② 模式选择。可选"开关"或者"飞行模式"两种。

③ 位置选择。每个模式下,都有3组位置可选,都可单独设置其对应的感度。"开关"模式下,需要选择位 置切换开关,默认为[--]。

④ 状态选择。选择"位置"1、2、3三种比率输出。

⑤ 类型选择。给当前"位置"选择对应工作的感度类型。

⑥ 比率调整。选项因类型选项而异("普通"类型下, "比率"范围0%-100%; "AVCS"类型下, "比率"范围是NORM[0~100%]、AVCS[0~100%])。

⑦ 微调开关选择和微调比率设置。感度微调开关,默认为[--];比率值可设范围±20%。用于对感度的微调。

通常悬停和高空飞行时的敏感度不同,因此请切换各个条件(位置)分别进行敏感度调整。

定速器

界面路径: 【模型功能】→【定速器】

该功能用于切换直升机旋翼头的转速。每个飞行模式都能通过硬件开关切换旋翼头转速。

功能设置

① 使用功能时,首先在【通道设置】界面分别进行功能通道分配。

② 模式选择。可选"开关"或者"飞行模式"两种模式。

③ 位置选择。每个模式下,都有3组位置可选,都可单独设置其下的转速(比率)。开关模式下,需要选择 位置切换开关,默认为[--]。

④ 状态选择。选择上面"位置"配置的启用与否。

⑤比率调整。更改比率,调整转速。

⑥ 微调开关选择和微调比率设置。感度微调开关,默认为[--];比率值可设范围±20%。用于对转速的微调。(微调开关为[--]时,默认进行已设置的微调比率速度修正。)

十字盘设置

界面路径: 【模型功能】→【十字盘设置】

十字盘连杆修正功能(除十字盘H-1模式以外)

十字盘行程:用来调整副翼、升降舵、螺距的移动量的功能。(可减少/增加/反转)

中立点设置过程(设置修正功能的基准点)

① 调整舵机摇臂使中立点在50%范围内,以使混控值尽量小。
② 移动光标到"中点位置",点击获取(不支持按键设置)读取油门摇杆位置(舵机中立点数值)。
读取中立点数值后,使用其他修正功能进行后续设置。

混控比率设置步骤

*以HR3 作为一个实例来描述混控比率的设置过程。

●设置油门杆到预先设置的中立点位置。调整连杆的长度以便使十字盘能在这个点位置保持水平。

- ●微调功能用来做较小的调整。
- ●调整螺距曲线呈一条直线并使直升机螺距达到最大值。
- ●调整需要修正的比率数据。

1、操作副翼时的调整

调整副翼摇杆左右移动时,使升降舵或者螺距方向不会出现干涉。

2、操作升降舵时的调整

调整升降舵摇杆上下移动时,使副翼或者螺距方向没有干扰。

*调整比率以便当油门杆怠速和全速时,确保十字盘只是在水平位置上移动。

飞行模式

界面路径: 【模型功能】→【飞行模式】

通过该功能,可以根据需要配置飞行模式,有3个飞行模式供选择。

如无需使用条件切换功能的话,不必在此页中进行设定。可以直接使用默认配置。

当设定多个飞行模式以后,它们之间的优先级以排序最后的飞行模式为最高优先级!

延时:避免切换飞行模式时因舵机位置的突然变化,或通道之间动作时间的不同步等所导致的机身晃动。 每一个通道都可以设置。如果切换的条件被设定延时,其相应的功能将会在设定的延时时间后才发生变化。

副翼差动

界面路径: 【模型功能】→【副翼差动】

当副翼使用 2 个舵机控制时,可以对左右副翼舵面的上下舵角比率独立进行调整。 *选定机型之后,两副翼机型才使用该功能。

*调试时请操作摇杆到端点进行最大动作验证,避免超出舵机或机体动作范围。

油门曲线

界面路径: 【模型功能】→【油门曲线】

此功能调整油门通道的动作曲线,用来优化油门摇杆的输入时对应的动力大小。

注意: 发动机启动时,一定要在普通模式下,以正常怠速启动发动机。

*飞行模式:在【模型功能】→【飞行模式】中设置"飞行模式"控制开关。通过开关进行切换,分别进行功能设定。

油门锁定

界面路径: 【模型功能】→【油门锁定】

主要用于模型调试时使用。通过开关控制油门在最低位置,保证调试安全。

功能控制开关,默认[--]

油门熄火

界面路径: 【模型功能】→【油门熄火】

安全简便地使引擎熄火。油门熄火为停止引擎运转提供了一个简便的方法。一般来说可以在怠速状态下拨 动一个硬件开关即可实现。此功能不能在油门高位时触发,以防止错误的熄火操作。必须选择开关工作的位置 和方向,因为初始的设定是[--]

*【油门锁定】和【油门熄火】同时启用时, 【油门锁定】功能优先级别最高。

选择的硬件熄火开关在打开和油门杆在怠速时,调整比率值,直到引擎可以完全关闭。

此外,确认油门连杆没有拉紧或舵机没有过载。

熄火位置设置

① 状态切换为 "启用"

② 点击"开关"按钮,弹出"开关分配"界面,选择控制开关。

③ 打开所选的"熄火控制开关",发动机摇杆在怠速的状态,调整比率直至发动机(电机)完全停止。 此处请注意油门连接,不要让舵机超出行程。

*飞行模式:在【模型功能】→【飞行模式】中设置"飞行模式"控制开关。通过开关进行切换,分别进行 功能设定。

陀螺仪

界面路径: 【模型功能】→【陀螺仪】

该功能用于调整陀螺仪感度。为每个飞行模式或开关设置感度和操作方式(普通模式/锁尾模式)。 一般只有普通锁尾应用时,则只需设置一组陀螺仪就可以了。

功能设置

① 使用功能时,首先在【通道设置】界面分别进行功能通道分配,并且在【通道设置】中将"开关"和 "微调"设置为[--]。

② 模式选择。可选"开关"或者"飞行模式"两种。

③ 位置选择。每个模式下,都有3组位置可选,都可单独设置其对应的感度。"开关"模式下,需要选择位 置切换开关,默认为[--]。

④ 状态选择。选择上面"位置"配置的启用与否。

⑤ 类型选择。给当前"位置"选择对应工作的感度类型。

⑥ 比率调整。选项因类型选项而异("普通"类型下, "比率"范围0%-100%; "AVCS"类型下, "比率"范围是NORM[0~100%]、AVCS[0~100%])。

⑦ 微调开关选择和微调比率设置。感度微调开关,默认为[--];比率值可设范围±20%。用于对感度的微调。

通常悬停和高空飞行时的敏感度不同,因此请切换各个条件(位置)分别进行敏感度调整。

70

空气刹车

界面路径: 【模型功能】→【空气刹车】

该功能用于在俯冲或降落时增加模型阻力。

可以通过控制开关激活预设的升降舵和襟翼偏移数值。可根据需要调整副翼、升降舵和襟翼舵机的偏移 率,也可以调整副翼、升降舵和襟翼舵机的速度。

F3A 与其他襟翼类型设置实例(选择了2副翼的模型类型): 状态:[开] 开关:[SC],关-开-关。(根据自己操作习惯进行分配) 延时:使动作过渡更自然,避免忽然的动作造成机体损伤。可根据实际应用进行调整。 偏移比率: 副翼:[-35~-45%] 副翼2:[-35~-45%]

升降舵:[+5~7%]

注意:此处输入的数值仅为示例。请根据模型实际调试动作效果调整舵机行程。

升降舵到翼型襟翼

界面路径: 【模型功能】→【升降舵到翼型襟翼】

当你需要将襟翼操作和升降舵操作混控时使用该功能。当混控开启后,襟翼放下的同时升降舵会抬高,可 以增加升力。

当该混控激活时,在无尾翼机翼上的升降舵也会受影响。
模型功能\固定翼

翼梢小翼

界面路径: 【模型功能】→【翼梢小翼】

该功能用来调整模型翼梢小翼的左右方向舵。翼梢小翼用来降低翼尖涡流引起的诱导阻力。(翼梢小翼是 每个机翼末端的垂直或带有一定角度的延伸部分。)

翼梢小翼可以起到显著增加机翼展弦比的效果,却不会增加机翼的结构应力和重量。虽然增大翼展也可以 降低诱导阻力,但同时会带来寄生阻力,且需要更多的动力来支持机翼的重量,这就导致在整体上没有进行有 益的节省。翼梢小翼可以帮助解决这个问题,它起到增加展弦比的效果,却不增加机翼的翼展。

●各舵机的动作量可分别进行调整。(舵机连接方法请参照"不同模型类别的舵机连接")

●连接造成混控方向相反时,可通过改变动作量的极性(+/-)进行调整。

●动作量过大或重复打舵的时候可能会产生舵机无反应。设置时务必确认机体的实际动作。

副翼升降舵

界面路径: 【模型功能】→【副翼升降舵】

如果在关联菜单的模型类型选择功能中,尾翼类型选择了副翼升降舵类型,则在此设置界面中,可对副翼 升降舵尾翼机型的升降舵进行调整。(仅限于升降舵左右各搭载1只舵机的机体)

操作副翼时, 让升降舵舵机做副翼动作, 可改善滚转轴的运动性能。

●各舵机的动作量可分别进行调整。(舵机连接方法请参照"不同模型类别的舵机连接")

●连接造成混控方向相反时,可通过改变动作量的极性(+/-)进行调整。

●动作量过大或重复打舵的时候可能会产生舵机无反应,设定时务必确认机体的实际动作。

模型功能\固定翼

V翼混控

界面路径: 【模型功能】→【V翼混控】

如果在关联菜单的模型类型选择中,选择了尾翼类型为"V翼"的话,则在此界面中,可对V翼机的升降舵 和方向舵进行调整。(V尾同时利用2个舵机控制方向舵的动作作为升降舵使用。除了每个舵面同时抬升和下降 之外(作为升降舵使用),2个舵面相反动作时则作为方向舵使用。对于V尾来说,这也被称为方向升降舵,因 为它们可以同时用于方向舵和升降舵。)

●各舵机的动作量可分别进行调整。(舵机连接方法请参照"不同模型类别的舵机连接")

●连接造成混控方向相反时,可通过改变动作量的极性(+/-)进行调整。

●动作量过大或重复打舵的时候可能会产生舵机无反应。请在50%前后进行调整。设定时务必确认机体的实际动作。

动作输出示例:

模型功能\固定翼

- 副翼1、副翼2行程设置
- *路径:【通用功能】-【舵角设置】

	<u> 舵角设置</u>	-1/4		<u> 舵角设置</u>	3/4
	行程	行程		限位	限位
1副翼	100%	100%	1副翼	135%	135%
2升降	100%	100%	2升降	135%	135%
3油门	100%	100%	3油门	135%	135%

副翼1、副翼2:正反设置(如舵角操作方向错误,检查舵机连接无误后,再进行正反设置) *路径:【通用功能】-【正反设置】

	<u>正反设置</u>	<u> 1/2</u>
1副翼	正	
2升降	正	
3油门。	Ē	
4方向	Ē	

飞行模式

界面路径: 【模型功能】→【飞行模式】

通过该功能,可以根据需要配置飞行模式,有3个飞行模式供选择。

如无需使用条件切换功能的话,不必在此页中进行设定。可以直接使用默认配置。

当设定多个飞行模式以后,它们之间的优先级以排序最后的飞行模式为最高优先级!

延时:避免切换飞行模式时因舵机位置的突然变化,或通道之间动作时间的不同步等所导致的机身晃动。 每一个通道都可以设置。如果切换的条件被设定延时,其相应的功能将会在设定的延时时间后才发生变化。

油门曲线

界面路径: 【模型功能】→【油门曲线】

通过7点曲线,针对油门摇杆的动作调整油门输出曲线,以使发动机(电机)转数达到飞行的最佳状态。

注意: 发动机启动时, 一定要在普通模式下, 以正常怠速启动发动机。

*飞行模式:在【模型功能】→【飞行模式】中设置"飞行模式"控制开关。通过开关进行切换,分别进行功能设定。

油门锁定

界面路径: 【模型功能】→【油门锁定】

主要用于模型调试时使用。通过开关控制油门在最低位置,保证调试安全。

功能控制开关,默认[--]

油门熄火

界面路径: 【模型功能】→【油门熄火】

安全简便地使引擎熄火。油门熄火为停止引擎运转提供了一个简便的方法。一般来说可以在怠速状态下拨 动一个硬件开关即可实现。此功能不能在油门高位时触发,以防止错误的熄火操作。必须选择开关工作的位置 和方向,因为初始的设定是[--]

*【油门锁定】和【油门熄火】同时启用时, 【油门锁定】功能优先级别最高。

选择的硬件熄火开关在打开和油门杆在怠速时,调整比率值,直到引擎可以完全关闭。

此外,确认油门连杆没有拉紧或舵机没有过载。

熄火位置设置

① 状态切换为 "启用"

② 点击"开关"按钮,弹出"开关分配"界面,选择控制开关。

③ 打开所选的"熄火控制开关",发动机摇杆在怠速的状态,调整比率直至发动机(电机)完全停止。 此处请注意油门连接,不要让舵机超出行程。

*飞行模式:在【模型功能】→【飞行模式】中设置"飞行模式"控制开关。通过开关进行切换,分别进行 功能设定。

摇杆位置提示音

界面路径: 【模型功能】→【摇杆位置提示音】

该功能用于在操作模型时,遥控器油门摇杆每次经过设置位置,都会有声音提示。方便操作者进行油门位置确认。

陀螺仪

界面路径: 【模型功能】→【陀螺仪】

该功能用于调整陀螺仪感度。为每个飞行模式或开关设置感度和操作方式(普通模式/锁尾模式)。 一般只有普通锁尾应用时,则只需设置一组陀螺仪就可以了。

功能设置

① 使用功能时,首先在【通道设置】界面分别进行功能通道分配,并且在【通道设置】中将"开关"和 "微调"设置为[--]。

② 模式选择。可选"开关"或者"飞行模式"两种。

③ 位置选择。每个模式下,都有3组位置可选,都可单独设置其对应的感度。"开关"模式下,需要选择位 置切换开关,默认为[--]。

④ 状态选择。选择上面"位置"配置的启用与否。

⑤ 类型选择。给当前"位置"选择对应工作的感度类型。

⑥ 比率调整。选项因类型选项而异("普通"类型下, "比率"范围0%-100%; "AVCS"类型下, "比率"范围是NORM[0~100%]、AVCS[0~100%])。

⑦ 微调开关选择和微调比率设置。感度微调开关,默认为[--];比率值可设范围±20%。用于对感度的微调。

通常悬停和高空飞行时的敏感度不同,因此请切换各个条件(位置)分别进行敏感度调整。

FTN8

天地飞科技售后服务政策

*注:天地飞科技售后服务属非盈利行为

1.本条款仅适用于WFLY深圳市天地飞科技开发有限公司所生产的WFLY遥控器产品,WFLY通过其授权经销商销售的WFLY遥控产品亦适用本条款。 2.WFLY遥控器产品自购买之日起,属于质量问题一年内由深圳市天地飞科技开发有限公司免费保修。(由深圳市天地飞科技开发有限公司承担往返邮费) 3.WFLY遥控器产品及配件自购买之日起七天内,在正常使用情况下出现质量问题,外观无损坏,凭保修卡及购机凭证在经销商处免费更换同型号产品;经销商在收到更换产

品时必须第一时间通知公司予以备案更换。 4.WFLY遥控器产品将由深圳市天地飞科技开发有限公司提供终身售后服务;对于自购买之日起人为损坏、改装、开盖损坏封条以及超过一年免费保修期的,用户必须支付往

返邮费、材料成本费及维修成本费用。

这回现,切村成平安及生参城平安市。 5.为确保您的权益受到保护,并能及时有效的为您服务,请在购买WFLY遥控器产品时完整填写好保修卡及索要购机凭证;由销售商签字盖章。用户享受本售后服务条款必须 提供保修卡及购机凭证,缺一不可。销售商没有给消费者保修卡或不按要求填写的,由销售商承担全部的售后服务费用。

6.本售后服务条款仅限于中国大陆销售的WFLY遥控器和附件正品。

邮编: 518055

网站: www.wflysz.com

网站: www.wify52.com 邮箱: info@wflysz.com 售后服务电话: 0755-26581817 技术支持电话: 135 3052 9708 传真: 26585126

